Manual: Remove tabs, indent consistently

This commit is contained in:
Eelco Dolstra
2012-02-28 15:38:47 +01:00
parent da26294fdb
commit 918fc5e6df
2 changed files with 280 additions and 269 deletions

View File

@ -19,67 +19,67 @@
more in-depth testing than what developers could feasibly do manually:
<itemizedlist>
<listitem> <emphasis>Portability testing</emphasis>: The
software may need to be built and tested on many different
platforms. It is infeasible for each developer to do this
before every commit.
</listitem>
<listitem> <emphasis>Portability testing</emphasis>: The
software may need to be built and tested on many different
platforms. It is infeasible for each developer to do this
before every commit.
</listitem>
<listitem> Likewise, many projects have very large test sets
(e.g., regression tests in a compiler, or stress tests in a
DBMS) that can take hours or days to run to completion.
</listitem>
<listitem> Likewise, many projects have very large test sets
(e.g., regression tests in a compiler, or stress tests in a
DBMS) that can take hours or days to run to completion.
</listitem>
<listitem> Many kinds of static and dynamic analyses can be
performed as part of the tests, such as code coverage runs and
static analyses.
</listitem>
<listitem> Many kinds of static and dynamic analyses can be
performed as part of the tests, such as code coverage runs and
static analyses.
</listitem>
<listitem> It may also be necessary to build many different
<emphasis>variants</emphasis> of the software. For instance,
it may be necessary to verify that the component builds with
various versions of a compiler.
</listitem>
<listitem> It may also be necessary to build many different
<emphasis>variants</emphasis> of the software. For instance,
it may be necessary to verify that the component builds with
various versions of a compiler.
</listitem>
<listitem> Developers typically use incremental building to
test their changes (since a full build may take too long), but
this is unreliable with many build management tools (such as
Make), i.e., the result of the incremental build might differ
from a full build.
</listitem>
<listitem> Developers typically use incremental building to
test their changes (since a full build may take too long), but
this is unreliable with many build management tools (such as
Make), i.e., the result of the incremental build might differ
from a full build.
</listitem>
<listitem> It ensures that the software can be built from the
sources under revision control. Users of version management
systems such as CVS and Subversion often forget to place
source files under revision control.
</listitem>
<listitem> It ensures that the software can be built from the
sources under revision control. Users of version management
systems such as CVS and Subversion often forget to place
source files under revision control.
</listitem>
<listitem> The machines on which the continuous integration
system runs ideally provides a clean, well-defined build
environment. If this environment is administered through
proper SCM techniques, then builds produced by the system can
be reproduced. In contrast, developer work environments are
typically not under any kind of SCM control.
</listitem>
<listitem> The machines on which the continuous integration
system runs ideally provides a clean, well-defined build
environment. If this environment is administered through
proper SCM techniques, then builds produced by the system can
be reproduced. In contrast, developer work environments are
typically not under any kind of SCM control.
</listitem>
<listitem> In large projects, developers often work on a
particular component of the project, and do not build and test
the composition of those components (again since this is
likely to take too long). To prevent the phenomenon of ``big
bang integration'', where components are only tested together
near the end of the development process, it is important to
test components together as soon as possible (hence
<emphasis>continuous integration</emphasis>).
</listitem>
<listitem> In large projects, developers often work on a
particular component of the project, and do not build and test
the composition of those components (again since this is
likely to take too long). To prevent the phenomenon of ``big
bang integration'', where components are only tested together
near the end of the development process, it is important to
test components together as soon as possible (hence
<emphasis>continuous integration</emphasis>).
</listitem>
<listitem> It allows software to be
<emphasis>released</emphasis> by automatically creating
packages that users can download and install. To do this
manually represents an often prohibitive amount of work, as
one may want to produce releases for many different platforms:
e.g., installers for Windows and Mac OS X, RPM or Debian
packages for certain Linux distributions, and so on.
</listitem>
<listitem> It allows software to be
<emphasis>released</emphasis> by automatically creating
packages that users can download and install. To do this
manually represents an often prohibitive amount of work, as
one may want to produce releases for many different platforms:
e.g., installers for Windows and Mac OS X, RPM or Debian
packages for certain Linux distributions, and so on.
</listitem>
</itemizedlist>
</para>
@ -92,19 +92,19 @@
<itemizedlist>
<listitem>It obtains the latest version of the component's
source code from the version management system.
</listitem>
<listitem>It obtains the latest version of the component's
source code from the version management system.
</listitem>
<listitem> It runs the component's build process (which
presumably includes the execution of the component's test
set).
</listitem>
<listitem> It runs the component's build process (which
presumably includes the execution of the component's test
set).
</listitem>
<listitem> It presents the results of the build (such as error
logs and releases) to the developers, e.g., by producing a web
page.
</listitem>
<listitem> It presents the results of the build (such as error
logs and releases) to the developers, e.g., by producing a web
page.
</listitem>
</itemizedlist>
@ -114,40 +114,40 @@
<itemizedlist>
<listitem> They do not manage the <emphasis>build
environment</emphasis>. The build environment consists of the
dependencies necessary to perform a build action, e.g.,
compilers, libraries, etc. Setting up the environment is
typically done manually, and without proper SCM control (so it
may be hard to reproduce a build at a later time). Manual
management of the environment scales poorly in the number of
configurations that must be supported. For instance, suppose
that we want to build a component that requires a certain
compiler X. We then have to go to each machine and install X.
If we later need a newer version of X, the process must be
repeated all over again. An ever worse problem occurs if
there are conflicting, mutually exclusive versions of the
dependencies. Thus, simply installing the latest version is
not an option. Of course, we can install these components in
different directories and manually pass the appropriate paths
to the build processes of the various components. But this is
a rather tiresome and error-prone process.
</listitem>
<listitem> They do not manage the <emphasis>build
environment</emphasis>. The build environment consists of the
dependencies necessary to perform a build action, e.g.,
compilers, libraries, etc. Setting up the environment is
typically done manually, and without proper SCM control (so it
may be hard to reproduce a build at a later time). Manual
management of the environment scales poorly in the number of
configurations that must be supported. For instance, suppose
that we want to build a component that requires a certain
compiler X. We then have to go to each machine and install X.
If we later need a newer version of X, the process must be
repeated all over again. An ever worse problem occurs if
there are conflicting, mutually exclusive versions of the
dependencies. Thus, simply installing the latest version is
not an option. Of course, we can install these components in
different directories and manually pass the appropriate paths
to the build processes of the various components. But this is
a rather tiresome and error-prone process.
</listitem>
<listitem> They do not easily support <emphasis>variability in software
systems</emphasis>. A system may have a great deal of build-time
variability: optional functionality, whether to build a debug or
production version, different versions of dependencies, and so on.
(For instance, the Linux kernel now has over 2,600 build-time
configuration switches.) It is therefore important that a continuous
integration tool can easily select and test different instances from
the configuration space of the system to reveal problems, such as
erroneous interactions between features. In a continuous integration
setting, it is also useful to test different combinations of versions
of subsystems, e.g., the head revision of a component against stable
releases of its dependencies, and vice versa, as this can reveal
various integration problems.
</listitem>
<listitem> They do not easily support <emphasis>variability in software
systems</emphasis>. A system may have a great deal of build-time
variability: optional functionality, whether to build a debug or
production version, different versions of dependencies, and so on.
(For instance, the Linux kernel now has over 2,600 build-time
configuration switches.) It is therefore important that a continuous
integration tool can easily select and test different instances from
the configuration space of the system to reveal problems, such as
erroneous interactions between features. In a continuous integration
setting, it is also useful to test different combinations of versions
of subsystems, e.g., the head revision of a component against stable
releases of its dependencies, and vice versa, as this can reveal
various integration problems.
</listitem>
</itemizedlist>
</para>
@ -258,3 +258,10 @@
</section>
</chapter>
<!--
Local Variables:
indent-tabs-mode: nil
ispell-local-dictionary: "american"
End:
-->