Recently a few internal APIs have changed[1]. The `outputPaths` function
has been removed and a lot of data structures are modeled with
`std::optional` which broke compilation.
This patch updates the code in `hydra-queue-runner` accordingly to make
sure that Hydra compiles again.
[1] https://github.com/NixOS/nix/pull/3883
It now receives notifications about started/finished builds/steps via
PostgreSQL. This gets rid of the (substantial) overhead of starting
hydra-notify for every event. It also allows other programs (even on
other machines) to listen to Hydra notifications.
Previously, when hydra-queue-runner was restarted, any pending "build
finished" notifications were lost. Now hydra-queue-runner marks
finished but unnotified builds in the database and uses that to run
pending notifications at startup.
As @dtzWill discovered, with the concurrent hydra-evaluator, there can
be multiple active transactions adding builds to the database. As a
result, builds can become visible in a non-monotonically increasing
order, breaking the queue monitor's assumption that build IDs only go
up.
The fix is to have hydra-eval-jobset provide the lowest build ID it
just added in the builds_added notification, and have the queue
monitor check from there.
Fixes#496.
Builds can now specify the attribute "isDeterministic = true" to tell
Hydra to build with build-repeat > 0. If there is a mismatch between
rounds, the step / build fails with a suitable status.
Maybe this should be a meta attribute, but that makes it invisible to
hydra-queue-runner, and it seems reasonable to make a claim of
mandatory determinism part of the derivation (since e.g. enabling this
flag should trigger a rebuild).
This was a bad idea because pthread_cancel() is unsalvageable broken
in C++. Destructors are not allowed to throw exceptions (especially in
C++11), but pthread_cancel() can cause a __cxxabiv1::__forced_unwind
exception inside any destructor that invokes a cancellation
point. (This exception can be caught but *must* be rethrown.) So let's
just kill the builder process instead.
We now kill active build steps when there are no more referring
builds. This is useful e.g. for preventing cancelled multi-hour TPC-H
benchmark runs from hogging build machines.
Currently, the hydra.nixos.org queue contains 1000s of Darwin builds
that all depend on a stdenv-darwin that previously failed. However,
before, first createStep() would construct a dependency graph for each
build, then getQueuedBuilds() would discover that one of the steps had
failed previously and discard all those steps. Since the graph
construction involves a lot of uncached calls to isValidPath(), this
took several seconds per build.
Now createStep() detects the previous failure right away and bails
out.
Previously, if the queue monitor thread encounters a build that Hydra
has previously built, it downloaded the output paths from the binary
cache, just to determine the build products and metrics. This is very
inefficient. In particular, when doing something like merging
nixpkgs:staging into nixpkgs:master, the queue monitor thread will be
locked up for a long time fetching files from S3, causing the build
farm to be mostly idle.
Of course this is entirely unnecessary, since the build
products/metrics are already in the Hydra database. So now we just
look up a previous build with the same output path, and copy the
products/metrics.
This removes the "busy", "locker" and "logfile" columns, which are no
longer used by the queue runner. The "Running builds" page now only
shows builds that have an active build step.
Previously, priority bumps could take a long time to get noticed if
getQueuedBuilds() was busy processing zillions of queue
additions. (This was made worse by the reintroduction of substitute
checking.)
This allows Hydra to use binaries from available binary caches. It
makes the queue monitor thread quite a bit slower, so if you don't
want to use binary caches, it's better to add "--option
build-use-substitutes false" to the hydra-queue-runner invocation.
Fixed#243.