I broke this when I added `me.` in f1e75c8bffec3f5f86122ee73e3c0f19e26ddb27
I added me. to disambiguate `id`, but:
* eval.id works on the per-build page
* me.id works on the other pages
* Just id works everywhere if I drop:
, prefetch => { evaluationerror => [ ] },
but this causes a query per row to collect the evaluationerror
records later, this becomes significantly slow on non-trivial
datasets.
Using evals->current_source_alias will use the correct alias
whether it is me or eval or something else.
DBIx likes to eagerly select all columns without a way to really tell
it so. Therefore, this splits this one large column in to its own
table.
I'd also like to make "jobsets" use this table too, but that is on hold
to stop the bleeding caused by the extreme amount of traffic this is
causing.
Taken from `Perl::Critic`:
A common idiom in perl for dealing with possible errors is to use `eval`
followed by a check of `$@`/`$EVAL_ERROR`:
eval {
...
};
if ($EVAL_ERROR) {
...
}
There's a problem with this: the value of `$EVAL_ERROR` (`$@`) can change
between the end of the `eval` and the `if` statement. The issue are object
destructors:
package Foo;
...
sub DESTROY {
...
eval { ... };
...
}
package main;
eval {
my $foo = Foo->new();
...
};
if ($EVAL_ERROR) {
...
}
Assuming there are no other references to `$foo` created, when the
`eval` block in `main` is exited, `Foo::DESTROY()` will be invoked,
regardless of whether the `eval` finished normally or not. If the `eval`
in `main` fails, but the `eval` in `Foo::DESTROY()` succeeds, then
`$EVAL_ERROR` will be empty by the time that the `if` is executed.
Additional issues arise if you depend upon the exact contents of
`$EVAL_ERROR` and both `eval`s fail, because the messages from both will
be concatenated.
Even if there isn't an `eval` directly in the `DESTROY()` method code,
it may invoke code that does use `eval` or otherwise affects
`$EVAL_ERROR`.
The solution is to ensure that, upon normal exit, an `eval` returns a
true value and to test that value:
# Constructors are no problem.
my $object = eval { Class->new() };
# To cover the possiblity that an operation may correctly return a
# false value, end the block with "1":
if ( eval { something(); 1 } ) {
...
}
eval {
...
1;
}
or do {
# Error handling here
};
Unfortunately, you can't use the `defined` function to test the result;
`eval` returns an empty string on failure.
Various modules have been written to take some of the pain out of
properly localizing and checking `$@`/`$EVAL_ERROR`. For example:
use Try::Tiny;
try {
...
} catch {
# Error handling here;
# The exception is in $_/$ARG, not $@/$EVAL_ERROR.
}; # Note semicolon.
"But we don't use DESTROY() anywhere in our code!" you say. That may be
the case, but do any of the third-party modules you use have them? What
about any you may use in the future or updated versions of the ones you
already use?
To quote the function's comment:
Awful hack to handle timeouts in SQLite: just retry the transaction.
DBD::SQLite *has* a 30 second retry window, but apparently it
doesn't work.
Since SQLite is now dropped entirely, this wrapper can be removed
completely.
Declarative jobsets were broken by the Nix update, causing
nix cat-file to break silently.
This commit restores declarative jobsets, based on top of a commit
making it easier to see what broke.
The uid split a while back caused the web interface to create GC roots
in /nix/var/nix/gcroots/per-user/hydra-www, where they wouldn't be
purged by hydra-update-gc-roots. Thus restarted builds would
accumulate forever. The fix is to keep the roots in a shared directory
with gid=hydra.
This removes the "busy", "locker" and "logfile" columns, which are no
longer used by the queue runner. The "Running builds" page now only
shows builds that have an active build step.
Hydra-queue-runner now no longer polls the queue periodically, but
instead sleeps until it receives a notification from PostgreSQL about
a change to the queue (build added, build cancelled or build
restarted).
Also, for the "build added" case, we now only check for builds with an
ID greater than the previous greatest ID. This is much more efficient
if the queue is large.
This removes the need for Nix's build-remote.pl.
Build logs are now written to $HYDRA_DATA/build-logs because
hydra-queue-runner doesn't have write permission to /nix/var/log.