It now receives notifications about started/finished builds/steps via
PostgreSQL. This gets rid of the (substantial) overhead of starting
hydra-notify for every event. It also allows other programs (even on
other machines) to listen to Hydra notifications.
This cannot be done in the hydra-evaluator systemd unit, since then
every other Nix process (e.g. hydra-evaluator and nix-prefetch-*) will
also allocate the specified heap size, probably leading to OOM.
Previously, when hydra-queue-runner was restarted, any pending "build
finished" notifications were lost. Now hydra-queue-runner marks
finished but unnotified builds in the database and uses that to run
pending notifications at startup.
The queue runner can now run up to ‘max-concurrent-notifications’ in
parallel (default is 2). This is useful when some hydra-notify
invocations can take a long time to complete (e.g. because they need
to compress a giant build log) and we don't want this to block all
other notifications.
Adding a 96-core aarch64 build machine to the build farm caused the
potential number of database connections to increase a lot, so we
started hitting the Postgres connection limit.
Setting
xxx-jobset-repeats = patchelf:master:2
will cause Hydra to perform every build step in the specified jobset 2
additional times (i.e. 3 times in total). Non-determinism is not fatal
unless the derivation has the attribute "isDeterministic = true"; we
just note the lack of determinism in the Hydra database. This will
allow us to get stats about the (lack of) reproducibility of all of
Nixpkgs.
We now kill active build steps when there are no more referring
builds. This is useful e.g. for preventing cancelled multi-hour TPC-H
benchmark runs from hogging build machines.
These are build steps that remain "busy" in the database even though
they have finished, because they couldn't be updated (e.g. due to a
PostgreSQL connection problem). To prevent them from showing up as
busy in the "Machine status" page, we now periodically purge them.